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The structure of the electromagnetic electrode layers that are
produced in flows across a magnetic field by a completely ionized
and inviscid plasma with good conductivity and a high magnetic
Reynolds number is examined in a linear approximation. Flow past
a corrugated wall and flow in a plane channel of slowly varying
cross section with segmented electrodes are taken as specific exam-
ples, The possibility is demonstrated of the formation of "nondissi-
pative" electrode layers with thicknesses on the order of the Debye
distance or electron Larmor radius and of "dissipative” layers with
thicknesses on the order of the skin thickness, as calculated from the
diffusion rate in a magnetic field [2].

In plasma flow in a transverse magnetic field, near the walls,
along with the "gasdynamic” boundary layers, which owe their for-
mation to viscosity, thermal conductivity, etc. (because of the pres-
ence of electromagnetic fields, their structures may vary consider-
ably from that of ordinary gasdynamic layers), proper electromagnetic
boundary layers may also be produced. An example of such layers is
the Debye layer in which the quasi-neutrality of the plasma is up-
set, No less important, in a number of cases, is the quasi-neutral
electromagnetic boundary layer, in which there is an abrupt change
in the "frozen-in" parameter k = B/p (B is the magnetic field and p is
the density of the medium). This layer plays a special role when we
must explicitly allow for the Hall effect and the related formation of
a longitudinal electric field (in the direction of the velocity v of the
medjum). We will call this the magnetic layer. The magnetic
boundary layer can be "dissipative” as well as "nondissipative” (see
below). The "dissipative” magnetic layer has been examined in a
number of papers: for an incompressible medium with a given motion
law in [1], for a compressible medium with good conductivity in [2],
and with poor conductivity in (3], In the present paper, particular
attention will be devoted to nondissipative magnetic boundary layers.

Fig. 1

The natwe of electromagnetic and, in particular, magnetic
boundary iayers in flow in channels across a magnetic field is greatly
affected by two factors: the conductivity of the plasma and the de-~
gree of manifestation of the Hall effect, which is characterized by
the transfer parameter

E=1]envf,

where f is the width, I is the discharge current, v is the velocity of
the plasma, n is the number of particles per cm®, and e the elemen-
tary charge (see [4]).

In addition, the plasma flow is characterized by the magnetic
Reynolds number

R, = vL|vy, (¥, = c/4no).

Here, L is the characteristic longitudinal length scale, vy, is the
magnetic viscosity of the medium, and o is the conductivity of the
medium, If £ is small (the trajectories of the ion and electron com-
ponents of the plasma virtually coincide) and the condition

Ry >I2[p

is satisfied, the electromagnetic layers will be localized near the
walls. If the effect of the finite conductivity of the plasma (i.e.,

dissipation) must be taken into account here, "dissipative” layers
are formed whose thickness increases according to the diffusion law
and is a function of the conductivity, But if the conductivity of the
plasma can be considered infinite, "nondissipative™ layers are form-
ed whose thickness is determined by the local characteristics of the
stream and is on the order of the "local” Debye distance or electron
Larmor radius,

Fig. 2

1If, however, £ » 1 (the trajectories of the ion and electron com-
ponents differ greatly; more precisely-—the angle between them—is
on the order of f/L), the perturbations of the "frozen-in" parameter
k and of other plasma characteristics will be transferred by electrons
throughout the entire volume of the channel, which, with allowance
for dissipation, leads to the formation of a single anode layer [2].

Owing to this "transfer of perturbations by electrons, " when & >
> 1, "poor” boundary conditions can completely disrupt the "ideal”
flow pattern.

Below we shall be concerned only with electromagnetic layers,
and, with this in mind, we shall consider the two-dimensional flow
across a magnetic field of a completely ionized and inviscid plasma
with good conductivity and a high magnetic Reynolds number Ry, >
> 1L2/f% under the assumption that L2/f%> 1, The case of Ry < 1
has been considered many times,

Even the calculation of ordinary gasdynamic boundary layers is,
as a rule, a very complicated problem,. But in the case of plasma
flow in an electromagnetic field, the sitvation becomes even more
difficult, since the number of electromagnetic characteristics and
parameters is greater, In gasdynamics, however, qualitatively correct
results are obtained for linearized problems, when flow perturbations
caused by the boundary conditions are considered small, Therefore,
we shall consider only a linear approximation for perturbations. This
is all the more justified for flows with £ 5 1, since it is clear from
the above that such a flow cannot be divided into a main stream and
boundary layers and, therefore, correct nonlinear calculation by the
boundary-layer approximation method is meaningless.

§1. Initial equation system. Problem of flow of
a plasma past a corrugated wall. Steady plasma
flows are described by the equation system of the
two~fluid hydrodynamic approximation (for the ion
and electron components) and by the Maxwell equa-
tions
MvVyv, = — —Zﬁi
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divryv; =0, divay,=0, divB=0; rotE=0,

divE = 4ne(n;—n,), o©=net/m,

rot B = 4nc e (nyv,— n,v,),
pi=r; (n';)7 P.=P, (ne) s (1.1)

where M and m are the ion (assumed to be singly
charged) and electron masses; nj e, P; o and vi ¢
are the number of particles per cm"", fhe gas-
kinetic pressure, and the velocity of the compon-
ents, respectively; E and B are the electric and
magnetic vectors; 7 is the electron-ion collision
time; and o is the conductivity of the plasma.

First, let us consider flow with a small trans-
fer parameter £, and namely, flow of a homogen-
eous plasma stream past a corrugated wall (Fig.1l).
Let the velocity v(0) of the unperturbed (by the wall)
flow be directed along the x axis. The magnetic
field B is perpendicular to the plane of the figure.
For the linear theory to be applicable, and this
will be assumed below, it is necessary that the
height of the wall projections a be small in com-
parison with the distance Ay, between them (light
corrugation)

alh, L1, (1.2)

In the given problem, ¢ is on the order of a/Ay.

In accordance with this, perturbations F®) of the
flow parameters {(density, velocity, etc. ) are con-
sidered small in comparison with the unperturbed
values of F(O)

FO ~(a /)y FO L FO (1.3)
If we give the perturbations in the form exp (ikr),

where k = {qu}, q = 27/Ay, after linearization we ob-
tain from (1.1)

@ v.(D
Oy (1) e o CE.
iMquv,) = ( » + (E + =X
B(o) + B(l)) (Vi(l.)__ve(l)) .
N en
oon v
imqutv W = —ike? e(v) —¢ <E(1) + -ec_ X
xBY 4 T Bm) - (Vi(ln—ve(“) ’

n© (k . \'i(l)) + qy(o)n,i(l) = 0’

n (k - v, D) + qrOnM =0

k.B¥? =0, kxBY=
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k x E(" =0, k-EY—= —dnie(n,®—nm),

0;
dpi( ) . dp (©)

£ 1.4

2 _ %P
mdn®’

=

where c¢j and ce are the thermal "acoustic" veloci-
ties of the components, and the superscripts 0 and 1
denote unperturbed and perturbed values, respect-
ively.

We shall also assume that the vectors v(1) and E(Y)
lie in the xy plane, and that B(!) has only a trans—
verse (along the z axis) component, For system (1.4)
to have nontrivial solutions, its determinant must
vanish, and the components of the vector k are thus
linked by the so-called dispersion equation.

The unsteady perturbations of the typeexp (ik - r — iwt)for a med-
ium at rest are treated in the conventional theory of plasma oscilla-
tions, where the dispersion equation is

D ky=0. (1.5)

The dependence of w on the components of vector k is found
from this.
When w = <k - v("), the dispersion equation has the form

D kv, k) =0, (1.6)

thereby giving the relationship between the components of the wave
vector, In our specific case,

® = Qs (g) (s =1, 2,..). 1.7

Generally speaking, we see that Egs. (1.5) and (1, 6) differ from
one angther,

In view of the awkwardness of the general disper-
sion equation of system (1.4), we shall consider the
cases of "good" and "poor" conductivity separately.

First of all, we assume that qv®r > 1. This means
that the probability of an electron-ion collision dur-
ing passage by a wall projection is small. The con-~
ductivity of the plasma can then %= considered infin-
ite and the dispersion equation h: & the form

— 292
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where Aj is the jon Larmor radius determined from
the veloeity v, we obtain
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Here, cy is the thermal speed of sound, cg the
Alfven velocity, and ¢, the magnetic speed of sound.
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But if A2g% > M/m,

72
ul‘z = qz (1 c( )2 ) ] %22 = (12,
T
o, 2 [
Be i 2
uaﬁ______..____._.._._. 1_]_0)
ce2 0‘2._.9(0)! q (

In both limiting cases, the root %2 describes magnetosonic per-
twbations which penetrate deep into the stream in supersonic (v >
>-¢,,) flows. The other two roots give surface waves. i, e,. the cor-
responding perturbations are localized near the wall. One of them
(%3 arises when quasi-neutrality is upset and, as is easy to see, is
related to the Debye shielding distance, The root %% in the first lim-
iting case equals —wpze/cTz when ¢ > cp (transverse electron osci-
liations) or — uwh/ckh when cT > ca (in this case, the layer thickness
85 = 1/[ny equals the electron Larmor radius, as calculated from the
velocity cT). In the second limiting case, the root #3 describes har-
monic (vacuum) perturbations. The roots %,, ; obviously describe
"nondissipative"” boundary layers whose thickness is determined by
local stream characteristics, i.e., it does not increase in space, as
occurs, for example, in ordinary viscous boundary layers. The pres-
ence of the three roots « allows us to set three boundary conditions
at the wall. These might be a condition on the velocity component
normal to the wall, a condition on the electric field, and a condition
on the electric current.

Let us consider the case qv() 7 < 1, when the effect of finite
conductivity must be considered. For a quasi~neutral plasma we ob-
tain the following dispersion equation:

c2k2 .
(g0, — k2L =iy (g% — F*}) (1.11)
'pe

H (g vy Wp’tT) ~ 0,
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#® == g*

(vo= -?EE) (1.12)

As before, the first root describes the magnetosonic perturbations
and the second root gives the "dissipative™ magnetic boundary layer.
The thickness &, = 1/, of this layer equals the skin thickness, as
calculated from the diffusion rate in the field, This means that under
real conditions the thickness of this layer will increase with distance
from the leading edge.

§2. Nondissipative flow in a channel of slowly varying cross sec-
tion for an arbitrary transfer parameter, The steady two-dimensional
flow of a plasma across a magnetic field in a channel of slowly varying
cross section (see Fig, 2), i.e., when the length L of the channel is
small as compared with its widih 2f, will be examined below. The
flow will be considered nondissipative; dissipative flows of a quasi~
neutral plasma were investigated earlier [2]. The elecirode-walls of
the channel are assumed to be in narrow (more precisely, infinitely
narrow) segments that are electrically insulated from one another.

As is known, electrode segmenting makes it possible in principle to
accomplish, in a narrow channel, quasi-one-dimensional flow in
which all of the flow parameters (except the potential) are slow func-
tions only of the longitudinal coordinate x.

While it is easy to short circuit the segments by placing high
but finite resistances between them, small perturbations of the ideal
boundary conditions arise and, as a result, boundary layers are pro-
duced.

In the absence of dissipation, the flows are con-
veniently described by the stream functions ¥i, e
which are introduced as follows:

P 0P,

nkvkx=3fy Mgy =— 5  (k=te. (2.1)

in the above two-fluid model, the system of equa-
tions describing the flow have the form{5]

mallz) + )]+ ut o= oiw,

(] + ]+ ve—eo = v,
wy =S—,—:-k—dpk,
Lot AR+
B= 2% o0p—).
Tt m"[a—(L%E)Jfa—y(ﬂa%ﬂ
AQ = — 4zte (n; —n,) (2.2)

Here, Uj ¢ are arbitrary functions of ¥; and ¥e re-
spectively, and wi denotes the "enthalpies" of the
components, while ¢ is the electrostatic potential. For
a channel of slowly varying cross section, system
(2.2) can be significantly simplified with a boundary-
layer approximation, i.e., neglecting the square of
the first derivatives and neglecting the second deriv-
atives with respect to the longitudinal coordinate x,
since they are small, on the order of fZ/LZ, as com-
pared fo the derivatives with respect to the trans~
verse coordinate y [5].

We take the quasi-one-dimensional flow as the un-
perturbed flow (whose characteristics have the su-
perscript 0):

1,®) = " = n, (), B — = By (),
Ui(“) —_ Uo.;—— e BoC—lnnﬂ‘Pi(m,
U = Ug, + eBocng ",
P = (nof) T, PO = (novof) (L — Eby),
T=y/f, &=cBo(0)/4mne(novof),
b= B[By(0), Bg/no= const,

PO = Qg (&) — ¢ ng ™ By (novof) T
Mve? /2 + w,® (ng) -+ e@oo = Uy = const . (2.3)

Uy, = const ,

noof = const

Here, f is the channel half-width; £ is the transfer
parameter for a channel of infinite length, where By~
— 0 as x— L; and the coordinate origin x = 0 is set
at the channel inlet, where v, = 0.

We introduce the dimensionless values

- o-_2

novof ’ Mec,2(0)’
n _ BRO)
N=-- <CAZ O = 317 (0))- (2.4)

Assuming that the perturbations of the quasi-one-
dimensional flow are small, let us linearize system
(2.2), omitting the perturbation superscript 1,

c42(0) p20 .
(fo)? 852 —

hne? 3
=Ne—Ni(mpz:."ﬂi}°-), (0 LA )mpﬁ

gb = \Fi _‘{Pev
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+ ff(o)( )N 10 =g

m  Eve®
(M 3 30(0) 6; )\F +

Ec,2 m vg?
+ (1 —5%5)
dg; (©)

Wy, — BholV; -+ b —i- =

_Ezv_ﬂg_"_(ﬂ‘i_ .
= PO N M),

Ne"'— g‘D = ge(g_gbo) ’

a —Eb,
Wyt — by 2

m Engtly Y, N\
M 0op%q 05\ 9 ¢ )’

£:(0) = 37257 004 O

8 (E—8bo) = 37575700 (E—Ebo) . (2.5)

0,2 (0) 2(0)

It was assumed in the linearization that the per-
turbations of the function Uk(¥y) had the form

U, L _ U, (9, (0)) _ \P 1) (k=ie). (2.6)

It is easy to see that the functions §Uk correspond
to the presence of isomagnetic perturbations

5 (B) By (B(l) n, (1)
\n By ﬂ—o) ’

at the inlet to the channel and on the walls. The velo-
cities ck are introduced from the relations

dw, = Mc2dN, ,

and are the speeds of sound for ions and electrons. In-

stead of Eqgs. (2.5.5) and (2.5.6), we can, using (2.5.3)
and (2.5.4), obtain

. _ a0 acb
e, c2
+§(WN1+ T:(E)Ne>’ 2.7

¥, — ¥, = gbo[—gc—(‘lf,—f-
2
FIO+E g M) — M) 2.8)

Here, u(x) is an arbitrary function. The system of
equations (2.5), (2.7), and (2.8) reduces to the follow-
ing two equations

v, oY,

aia—g+BiNi=aiv d’e'a_cl—‘_BeNi:as s (2.9)
R WA (0)42 ¢+ ?702__

=+ (Fo, ) + [T

e o+ )

o = E(ﬁ)z + (c‘;—:)')')z +

+ (i) 5t () 7

Evote, \2 3
i (](u c42(0) age ?

—t() + [+
s
fo=—t (GAU?O) )2+[—Z} (%):L%] 2

[ ?)o 2 38
)(m) 5’

a; = u(x) + [—é— (w)z_

Top

+ 57 E(Uo

— o+ (%)20%];5 £,
e = (2) + g,(E—Ebo) +
{1t (at) w5+
+) &)+
AT o
CP=citon cimeitem.  (2.10)

The operators o and 8 are commutative. From
system (2.9) we obtain

@B, —aB) N, = a,a,— aa,
(0B —ap) 5 ¥, =Ba,—Ba,. 21D

Let gj(¢) = 0, i.e., perturbations (b - Nj) are ab-
sent at the inlet. In this case,

o (o g+ B, =0,
7]

Y, P
E3 (“e ":fl' + BeNi) = 57 8 (E—Eho) . (2.12)
Let us introduce the function z, assuming that

ohy;/oLt = —B;2,0N;/8¢ = ajz. Then thefirst equa-
tion will be satisfied and the second will yield

@ —aB)z=ggE—t), (219
or
(Z+ e ) ep—ap)z=0,
af,—aB =

M 61.3-— ve? g8
m Eci%ﬂ aze

_m ¢ c.c? 54
M (cAcA © (fmp)“) [55“
e fo 2 g2
_( :icen) 6_&' +

+%(%(f‘%)’)2} . (219

cceci

+’§4$_(cucA (O)f(op)Z_a-

e, e, a5
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The solutions of the equation (ajBe - aefj) F = 0
will be

jo e\
Fy = e, u12=( cpc;-) » Fp== st
i’e
fo,c m\* .
gt = (—c’;—” 7) . (2.15)
T

Direct substitution of w,; into (2.14) makes it clear
that the terms containing the first and third deriva-
tives with respect to { are small. The root w4 cor-
responds to an electromagnetic layer whose thick-
ness is on the order of the Debye shielding distance,
and the root w, corresponds to a layer with a thick-
ness on the order of the electron Larmor radius (when
cp » c7), as calculated from the "total" speed of
sound c¢. When £ — <« the solution of Eq. (2.14) has
the form

z2=%E—8b) +Fua) exp Ix, € — DI +

+ fuo (2) exp [— 2 (§ + 1] +
+ f1a (%) exp [x, (G — 1] 4

+ fra (®) exp [—x%, § +1)]. (2.16)
This corresponds to the presence of electrode lay-
ers and to the transfer of perturbations along the un-
perturbed electron trajectories. If g;(Z) # 0, we must
solve Eqgs. (2.11) and (2.12), which are more compli-
cated than (2.14). At finite £, Eq. (2.14) has a solu-

tion with a more complex structure than the Debye
equation (2.16), since the operators

a dby 0
E+EETE’ aiBe_d‘eB{

are noncommutative.
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